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PHOTOELASTIC STUDIES OF INTERNAL
STRESS DISTRIBUTIONS OF UNIDIRECTIONAL COMPOSITES

I. INTRODUCTION

The behavior of composite structures subject to loading

and environmental fluctuations is intimately related to the

micromechanics of load transfer between the constituent parts

of the composite, i.e., fiber and matrix.

Matrix stresses on a transverse plane of unidirectional

composite arise due to matrix shrinkage during curing, differ-

ential thermal expansion, moisture absorption and external

loading. For relatively low fiber volume ratios, resin shrink-

age produces compressive radial stresses and longitudinal shear

stresses around the fibers in the matrix. The fibers themselves

re subjected to radial and longitudinal compression. Shrinkage

stiesses are usually studied by means of two-dimensional photo-

elastic modlels of the transverse cross section of the composite.

The state of residual stress around fibers is greatly affec-

Led by the environment, i.e., temperature and moisture. A uni-

form temperature change throughout the composite is exactly equi-

vialent to the effect of matrix shrinkage. A uniform temperature

increase may nullify any beneficial effects that the radial com-

pressive shrinkage stresses may have. A similar situation exists

when a uniform moisture absorption occurs. This tends to relieve

the curing residual stresses and thus decrease the transverse

tensile strength.

A great deal of analytical work has been reported on the

rricromechanics of unidirectional composites. 1 2 2  Related exper-

imental work has consisted primarily of two-dimensional photo-

elastic studies. Shrinkage stresses around inclusions have been

studied by Daniel and Durelli
2 3 '2 4 and Koufopoulos and Theocaris

2 5

by means of twc-dimensional models. The effects of external1Danie!27,28Loataing were studied by Sampsor2 6 and An extensive

three-dimensional s3tudy of the effects of shrinkage and external

1l1 RFSEARCH INSIIIUTE

IITRI-Y6062



loading was conducted by Marloff and Daniel using a realistic

three-dimensional fiber-reinforced composite model. 29

Transverse tensile loading of a unidirectional composite

results in high strain concentrations in the matrix. In this

case the matrix stresses and strains are the governing criteria

of failure. The transverse tensile behavior of unidirectional

composites is greatly influenced by the residualstresses produced

by matrix shrinkage, by temperature and moisture absorption.

The extent to which these parameters influence the behavior of

the composite is very important and merits more careful experi-

mencal investigation.

This report describes an experimental investigation using

models and prototype composite specimens to determine internal

residual and loading stress distributions and correlate them

;nt' th-e transverse tensile strength of unidirectional composites.

lIT RE5LARCH INS!TIJTE
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2. SPECIMEN PREPARATION

Model composite specimens simulating the transverse cross-

section of unidirectional composites were prepared by casting

epoxy around an array of glass disks. The glass disks were

1.27 cm (0.5 in.) in diameter arranged in a square array with

a clear spacing corresponding to a fiber volume ratio of Vf =

0.50 + 0.02 as shown in Fig. i. A single isolated disk was also

included in the same specimen for reference.

The matrix material used was Dow Epoxy Resin (DER 332)

cured with twelve percent by weight of Dow Epoxy Hardener (DEH

24, Diethylene Tetramine) . The resin was mixed with the hardener

and deaerated in a vacuum jar. The glass disks were arranged in

a square array with a clear spacing between them equal to one-

half tbe disk radius. They were cemented to one side of the mold

by means of Duco cement to prevent them from sliding. The mold

was closed with a glass plate and the resin poured from the top.

Care was taken to prevent air bubbles from forming and adhering

to thle inclusions. hle resin was allowed to cure in the mold at

room temperature. Four two-dimensional specimens, 30.5 cm (12.0

in.) long, 8.25 cm (3.25 in.) wide and 0.60 cm (0.24 in.) thick,

were prepared.

The same matrix was used in preparing unidirectional proto-

type composite 3pecimens with glass fibers (G filament size.)

Six layers of glass roving were wound around an open metal frame

cf dimensions 35.6 cm x 44.5 cm (14 in. x 1.7.5 in.) in a filament

winding machine. Resin was brushed on each layer of glass fibers

during winding. A total of 180g of resin was used for the six

layers. Seventy-five minutes after first mixing the resin and

the hardener, the wet layup was placed over a 0.051 nmi (0.002 in.)

,-hick teflni- fil and was covered with a layer of TX 1040 separa-

tor (teflon coated glass scrim clota) , rv.;,o layers of style 1581

gla-s ,Ieeaer clot , a 0.051 mm (0.002 in.) thic. teflon film

with porforaticns. inr' a layer of style 1581 glass vent cloth.

The assemb.-v was ,placed between two steel pressure plates in a

lIT RFSEA I,..H INSTITUTE
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blanket press. Full vacuum was drawn and a 207 kPa (30 psi)

pressure applied. After thirty minutes the vacuum pump was

shut off and the plate was vented to atmosphere. The plate

was then allowed to cure at room temperature overnight. Three

27.9 cm x 33.0 cm x 0.173 cm (11 in. x 13 in. x 0.068 in.) uni-

directional plates were fabricated. Coupons, 2.54 cm (1 in.)

wide and 22.9 cm (9 in.) long, were machined from these plates

with their longitudinal axis perpendicular to the fiber direc-

tion.

IT RESEARCH INSTITUTE

5 IITRI-M6062



3. MATRIX MATERIAL CHARACTERIZATION

Mechanical and optical properties were determined at room

temperature for the matrix material used in the preparation of

the specimens. The material was characterized after curing at

room temperature and after post-curing at 339 degK (150*F) and

367 degK (200°F).

Mechanical properties were determined by testing under

uniaxial tension dogbone specimens instrumented with strain

gages. These specimens had a gage section 10.2 cm (4 in.) long,

0.76 cm (0.30 in.) wide and 0.53 cm (0.21 in.) thick. Stress-

strain curves for a room-temperature cured specimen two weeks

and four weeks after casting and a postcured specimen are

shown in Figs. 2, 3, and 4. No significant differences were

found in the elastic properties among the three specimens. The

aveiage modulus and Poisson's ratio for the matrix material are:

Z = 3 84 GPa (0.557 x 106 psi)

= 0.36

The measured tensile strengths were:

ST = 45.3 MPa ( 6,560 psi) (room temperature cured)

ST = 83.1 MPa (12,050 psi) (post-cured at 339 degK, 150'F)

ST = 86.9 MPa (12,600 psi) (post-cured at 367 degK, 200*F)

The material fringe value was determined by testing disks

under diametral compression and using the following relation:

f 4P
- (1)

where
f !losi -in.

f material fringe value, kPa-m/fringe !lsi-.

P diameral load, N 
(ib)

D = disk diamEter

IIT RESEARCH INSTITUTE

6 IiTRI-M6062



4.

YY 6xx

125

3.5-

3.0
20

2.5-

15

2.0

co;
) 1.5
c--n) Et 3.7 GPa (0.54x1O6 psi)

V= 0.35

1.0

5

0.5

0

0 2 4 6 8 I0

STRAIN, e, 103 c

Figure 2
SLre.s- 'train Curves for DEL 332 Epoxv Resin.
Specircn No. 2-18-D11 (Room-Pemperature Cured,

Tested Two t'h.eks after Casting)

7



4.0

-Eyy Exx

-25

3.5-

0.

3.0
-20

2.5-

-- 15

- 2.0-

U)
w- 1.5-

t- E=4.OGP(0.58xO 6 psi)

I = 0.38

I0-

.5

0.5-

00

STRAIN, 6, 10 3

Figure 3

St-:ss-Stiain Curves for DER 332 Epoxy Resin.
St.lecer Io. 1-18M-D31 (Roo-Temperature Cured,

Tested Four Weelks after Casting)

.... m nii lf l".. ... . l ,- .- .. .... .......... C.



7-

Eyy E xx

6
-40

5-

A -30

ji 4-

(n

-20
I-

=3.8 GPa (0.55xlO6 psi)
v0.37

I0

0 3 6 9 2 15
STRAIN, OF, 103 c

Figure 4

Stress;-Strain Curves for DER '132 ,pox',
Resin. Specimen No. 1-17 DU, (Post-Cured

at 367 degK, 20CF)

IJ



4

n = fringe order at center of disk

A typical load-birefringence curve for a room temperature-cured

disk is shown in Fig. 5. Fringe values obtained from such cal-

ibration tests are:

f = 8.75 kPa-m/fringe (50.0 psi-in/fringe) (room tempera-

ture cured)

f = 8.05 kPa-m/fringe (46.0 psi-in/fringe) (post-cured,

3390K)

f = 6.90 kPa-m/fringe (39.4 psi-in/fringe) (post-cured,

367 0K)

.Thevariation of fringe value with post-cure temperature is shown

;n Fig. 6.

The density of the matrix resin determined by weighing a

disk of the material and measuring its volume is:

= m3
:)m 1,190 kg/rn

lit RESEARCH INSI'fTUTE
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4. EVALUATION OF RESIDUAL STRESSES

'TIe state of residual stress in the model. and prototype

composite specimens can be determined photoelastical.y and

described in dimensionless form by dividing the actual stresses

by the nominal interface pressure around a single isolated

inclusion. Experimental and analytical solutions exist for

this dimensionless stress distribution for a composite of 0.50

fiber volume ratio.29  Stress distributions obtained from a

three-dimensional photoeiastic model along two axes of symrmetry

are shown in Figs. 7 and 8.

To determine the exact magnitude of residual stresses in

any other composite model with a 0.50 equivalent fiber volume

ratio it is necessary to multiply the dimensionless stresses

above by the residual stress u R at the interface of an iso-

lated inclusion.

Thus,. the principal residual stress components at the

interface along an axis of symmetry through the fibers are

(Fig. 8):

R
a, = 0.8 aR

o=-2.0 oR (2)

R
0= 0.9 a

7 0

The interface stress around a single isolated fiber is obtained

from the fringe order around a single inclusion as follows:

RE nono f 
(3)

wherc n R i; the maximum fringe order at the interface of a

single inclusion, f the material fringe value and t the speci-

men th'ickness

I1' RESEARCH INSITUTE
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Typical values for the photoelastic models used in this

study for a room temperature-cured matrix are:

tR
n = 1.35

0

f = 8.75 kPa-m/fringe (50,0 psi-inlfringe)

t = 0.592 cm (0.233 in.)

Substituting in Eqs. (3) and (2) we obtain:

o', = 1,600 kPa ( 230 psi)

= -4 .000 kPa (-580 psi)

z =1,800 kPa ( 260 psi)

T h-e octahedral shear stress, commonly used as a failure

criterion, is

R
R 2 + (9)2 + 211/2 R (4)Oct .= ---- (2.8) (2 (0.1) 1.344a

L

The residual strain components at the matrix-fiber inter-

Lace alcrLg the axis of symnetry through the fibers are:

Ra
_ 0 (0.8 + i.lv)

e E

. - (2 0 1. 7v) (5)r E . .

R

:' E, (0.9 + 1.2)

The corresponding octahedral shear strain is:

P, 2(1 + .) R (6)
oct o ,c(

The state of residual stress depends on the curing cycle.

Foi- the resin used here, a simple way to produce different mag-

nitudes of residual stress is to post-cure the room temperature-

cured resLn at diifferent elevated temperatures. The easiest way

lIT RESEARCH INS'rITUTE
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to determine the magnituda of residual stress as discussed before

is to measure the birefringence around a single isolated inclu-

s_on. Figure 9 shows residual birefringence around isolated

glass disk inclusions in a resin cured at room temperature and

pe3t-cured at various elevated temperatures. The variation of

maximum fringe order and residual stress at the interface with

post-cure temperature is illustrated in Fig. 10. The variation

of fringe value with post-cure temperature was taken into account

in caiculating the interface residual stress.

I;1 RESEARCH INSTITUTE
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5. INTERNAL STRESS DISTRIBUTION UNDER EXTERNAL LOADING

The t,-dirensionaL photoelastic models of the transverse

cross-section of a unidirectional- composite (Fig. 1) were

loaded in uniaxial compression in the plane of the model. A

Ioadicn fixture was used to apply uniform pressure along the

two opposite edges of the model (Fig. 11). A compression

loading was selected to avoid the possibility of cracking or

debonding of the resin around the inclusions which might occur

under tensile loading. It is easier to control the uniformity

of compressive loading when applied by means of hydraulic pres-

sure. From the point of view of stress analysis, within the

elLastic range, the stress distribution is the same for tension

or cmpression except for the sign of the stresses.

The loading fixture is essentially a four-member frame con-

sisting of two vertical supports and two horizontal pressure

secLions. The pressure section is a sandwich of three steel

pLates securely fastened to each other by means of bolts. The

r-hik~ness of the central plate is approximately equal to the

thickties.; of the model. This central plate is recessed from

the outer plates to accoimnodate a flexible rubber tube and the

loaded edge of the specimen. To prevent buckling of the speci-

men under the applied compressive loads, two pairs of anti-buck-

ling bars were placed horizontally across the plate and fastened

to thc vertical members of the frame. A small clearance of ap-

proximately 0.127 mm (0.005 in.) was provided between these bars

-nd the specimen.

The specimens were inserted in place by lowering the lower

pressure section by means of the large bolts at the base. A

source of high pressure nitrogen gas was used to pressurize the

rubber tubing. Although the pressure in the rubber tubing was

mea.lure.z accurately with a pressurc, gage, it is kno-wn that the

etklectiwe pressure loading on the specimen is slightly lower than
,-I-e measurd pressure. The ineffective pressure is determined by

I'T RESEARCH INSTITUTE
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plotting the apparent pressure versus a fringe order and mea-

suring the vertical intercept on the pressure axis at the zero

(load-induced) fringe order.

Two specimens were subjected to five levels of load. Dark

field and light field isochromatic fringe patterns around the

inclusions were photographed ana birefringence readings were

taken at 0 kPa (0 psi), 1,380 kPa (200 psi), 2,760 kPa (400 psi),

4,140 kPa (600 psi), 5,520 kPa (800 psi), and 6,900 kPa (1,000

psi) gage pressures (Figs. 12 and 13). The two specimens differ

in the amount of initial birefringence or residual stress.

The data of interest in testing these models were the max-

imum fringe order n1 at the boundary of one of the central inclu-

sions of the array along the vertical diameter and the fringe

order n0 at a similarly located point around the single isolated

inclusion. The variation of these two fringe orders with applied

stress is shown in Figs. 14 and 15 for the two specimens tested.

The ineffective part of the applied pressure has been subtracted

in these graphs. The horizontal intercepts on the fringe order

axi.s represent initial birefringence due to residual stress.

The state of stress in the matrix of the two-dimensional

specimens is a complex three-dimensional one due to the out-of-

plane restraint introduced by the inclusions at their interface.

Away from the interface, the state of stress tends to approach

the plane stress condition. In two-dimensional photoelastic

analyses. the birefringence measured is related to the in-plane

stresses averaged over the thickness (optical path of the spec-

imen. Stress-strain relations can be expressed in terms of these

values by integrating them through the thickness of the

specimen.
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E L ,

-y E ,I-) + V(F+ ) (7)

E<>3E: = . ---
z ,,+- -I-2) \)z + a + ay

where ,x y y C x ' Ey are in-plane stresses and strains trans-

verse and parallel to loading direction and averaged through

the thickness of the specimen; - and _z are the out-of-plane

stress and strain averaged through the thickness.

The inclusions can be considered rigid compared with the

matrix due to the high ratio of moduli. This fact introduces

the following condition on the boundary of the inclusion on

the vertical axis of symmetry where the maximum stress occurs:

= = 0 (8)

From Eqs. (7), it follows that

= -= i~- 0 (9)Y z I - V Oy

Substituting in the stress-optic law of photoelasticity

2nlf

x y t

we obtain

- 1- 2n,f (1
y (----77) 2-

and

S 2nl1f
-- X (12)

The maximum stress at the interface was calculated from the

Lleasured fringe order using Eq. (11). The stress concentration

1I1 RESEARCH INSTITUTE
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factor obtained by dividing the interface stress by the applied

average stress is:

0

k = 1.95 (13)

which is very close to similar values obtained by Adams3 0 and
29

Marloff and Daniel. The stress concentration value above is

very sensitive to the value of Poisson's ratio for the material

because of the (1 - 2v) factor in the denominator of Eq. (11).

For a Poissonis ratio of v = 0.37 the stress concentration fac-

tor becomes 2.04.

The quantity of importance in transversely loaded compo-

sites is the strain concentration factor in the matrix since

many failures originate in the matrix. This factor is defined

as the ratio of the maximum interface radial strain to the aver-

age strain in the composite model.

k = (14)

From the relation

ex- y _ E (x - ay) (15)

the boundary condition,

Fx = 0

and Eqs. (11) and (12) it follows that

(1 + v) (I - 2\,) (y E ' T - y (16)

The nominal strain is

(17)
C
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where . average stress

E = transverse composite modulus

Then, the strain concentration factlor is expressed as

k. k c (i + 0) (1 - 2v) (18)

'E

For v 0.36, k = 0.595 k ' C

Of the quantities entering expression (18), k is obtained

from photoelastic data only, E and v are obtained from charac-

terization tests of the matrix material and E is either calcu-

lated or measured directly in the model or in a provotype mate--

rial of the same fiber volume ratio.
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e. PREDICTION OF TRANSVERSE TENSILE STRENGTH

6.1 Maximum Tensile Strain Criterion

The maximum strain at the interface of a fiber due to

combined transverse tensile loading and curing is obtained

by adding the strains from Eqns. (5) and (16);

R(!+ ) I - 2, C, (
= (1+ ) (I V) A- k a - (2 + 1.7v) (19)

Ea (1 ~ 0 0 E
Ymax r max- o E

Equating this strain to the ultimate tensile strain in the

resin and assuming linear elastic behavior to failure, we

obtain:
Sr.'a =_ - - ( y ( 2 0 )

E max

Solving for u° in the equations above and equating it to

the transverse tensile strength of the unidirectional composite

we obtain:

C 1 IS+ R( 1. l7v)) (21)= $22T k- ( I + V) (i - 2v) T ± R (2 +1

Substituting the values ST = 45.3 MPa (6,560 psi), a0
2 Mpa (290 psi) and ' = 0.36, we obtain:

S2 2T = 43.5 MPa (6310 psi).

This value is very sensitive to the value of Poisson's ratio

used, because of the (I - 2v) factor in the denominator of

Eq. (21). For v = 0.37 the predicted strength becomes

S2 2T = 46.9 MPa (6,790 psi).

For a matrix material postcured at 339°K (150'F), ST = 83.1

Mpa (12,050 psi) and oa7= 7.6 MPa (1096 psi). Then

$ 227= 88.7 MPa (12,850 psi).
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b

6.2 Octahedral Shear Stress Criterion

Toe threc principal stress components at the

fiber matrix interface due to combined transverse tensile

ioading, and ctring shrinkage are obtained from Eqns. (2) and

V *' 2 - . (R (22)

k ' + 0.9(3

-V 00 0

ihe octahedral shear stress then is given by:

oct 3"2 ) + (O - 2 (0 - a 2 (23)
Oc: 3y y z z x

The octahedral shear stress for the uniaxially loaded

matrix material is given by

._ I:.__ ST

oct 3 T (24)

Equating Eqrus. (23) and (24) and using Eqns. (22) we obtain:

2 2 2 1-R

2-v 2 k 2  1 ,"I 2)\ ko R
0- 0 5.7 0

4- . 13 ,c,- R \ .2  - S2  = 0 (2.5)
\0

Substituting the values ST 45.3 NPa (6,560 psi),

R 2 MTa ( 290 psi) and j = 0.36 and solving for oo

we obtain:

, 22T  -- 59.7 MPa (8 660 psi).

fIT RESEARCH INSTITUTE

31 IITRI-M6062



Ie corre.;ponding value )f the predicted strengtri for the

postcured resin is

C = 122. 7 'Pa (.7, 780 psi)" 2 -F ..

6.3 Prototype_ Conosite Tests

Unidirectionnl [9061 coapons of glass/cpoxy having the same

natrix as the photoelastic models, the same fiber volume ratio,

and curcd at room temperature were tested in tension to failure.

I'he coupoas were 2.54 cm (1 in.) wide and 22.9 cm (9 in.) long.

The'y were iristurmented with a two-gage rosette on each side.

Sress-strain curves to failure for two such coupons are shown

4'.ii Figs. 16 and 17. Average results obtained from seven such

,estc

E,, = 12.6 GPa (1.83 x 106 psi)

= 0.10

$22 T = 47.3 MPa (6,850 psi)

_uu2' = 0.0034

The tensile strength above is close to the predicted value using

the maximum tensiL2 strain criterion.

Similar coupons as above were postcured to 339K (150'F)

and then tested in tension to failure. Stress-strain curves to

failure for two such coupons are shown in Figs. 18 and 19.

Pesults obtained from five such tests are:

ItT RESEARCH INSTITUTE
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E2 2 - 13.5 GPa (1.95 x 106 psi)

V21 = 0.09

S2 2 T = 56.4 MPa (8, 170 psi)

u

22T 0.0045

The value for the strength above is much lower than that

prediicted by either the maximum tensile strain or octahedral

shear stress criterion.
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7. ShiMeARY, CONCLIUSIONS AND RECOV4EI"DATIONS
FOR FUTURE WORK

An experimental investigation was conducted using two-

dimensional photoelastic models, as well as prototype composites

to study internal stress distributions in unidirectional com-

posites under transverse tensile loading. Two-dimensional photo-

elastic models were used to simulate the transverse cross section

of a unidirectional composite with a 0.50 fiber volume ratio.

The determination of residual curing stresses was reduced to

the measurement of the maximum fringe order at the interface of

a single isolated inclusion in the matrix. It was found that

residual stresses in the room-temperature cured matrix used in-

creased sharply with postcuring temperature. The variation of

the interface residual stress with postcuring temperature was

plotted. This stress varied from 2.0 MPa (290 psi) for a room-

temperature cured matrix to 7.6 MPA (1096 psi) for the same

matrix postcured to 339°K (150'F).

The maximum stress at the inclusion matrix interface was

determined from the photoelastic specimens. The stress concentra-

tion was determined as k = 1.95 for the composite models tested.

The strain concentration is much higher as it is proportional to

the ratio of the composite to the matrix modulus. For the compo-

sites studied here the maximum strain concentration was determined

as k = 3.81.

The transverse tensile strength of the composite was

calculated based on the determination of residual and loading

stresses and using two criteria, the maximum tensile strain and

octahedral shenr stress criteria.

Prototype composite specimens were made with the same matrix

marcrial and the same fiber volume ratio and were cured under the

same conditions as the pbotoelastic models. One group of speci-

ens was cured at room temperature only and the other grou. was

postcured to 33q°K (150'F). The measured tran:7verse tensile

strength of the 5:oom-temperarure cured Fpecimens was in good agree-

mient with that predicted by the maximum tensile strain criterion.
liT RESEARCH INST!TUTE
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The octahedral shear stress criterion overestimated the transverse

strength. In the case of the postcured specimens, both criteria

overestimated the measured strength.

From the results above, it is seen that a better under-

standing of the nature of residual stresses and their effect on

the strength of composites is needed. The dependence of resi-

dual stresses on the curing cycle, including cool-down path and

postcure cycle should be investigated using pbotoelastic models.

The relaxation of these stresses with time should be measured.

The failure modes in transversely loaded composites with

various magnitudes of residual stress, should be studied in order

to arrive at more reliable failure criteria.

Environment-induced dilational stresses (thermal and moisture

stresses) and their effects on composite behavior, should be

studied. Internal stress distributions should be determined for

various hygrothermal/loading conditions. These studies could

be conducted using photoelastic models. Predictions from these

studies should be checked by testing prototype composite speci-

mens under specific hygrothermal conditions.
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